A Dissertation for the Degree of Doctor of Philosophy

Effects of metformin on Sirt1, Nrf2 and AhR expression in cancer cells

Department of Pharmacy
Graduate School
Chungnam National University

By
Minh Truong Do

Advisor Hye Gwang Jeong

August 2014
Effects of metformin on Sirt1, Nrf2 and AhR expression in cancer cells

Advisor Hye Gwang Jeong

Submitted to the Graduate School
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

April, 2014

Department of Pharmacy
Graduate School
Chungnam National University

By
Minh Truong Do
To Approve the Submitted Dissertation
for the Degree of Doctor of Philosophy

By Minh Truong Do

Effects of metformin on Sirt1, Nrf2 and AhR
expression in cancer cells

June, 2014

Committee Chair
Sang Kyum Kim

Committee
Bong Hee Kim

Committee
Tae Cheon Jeong

Committee
Kwang Youl Lee

Committee
Hye Gwang Jeong

Graduate School
Chungnam National University
Contents

Contents ... i

List of Figures ... vi

List of Abbreviations ... x

Abstract .. 1

I. Introduction ... 6

1. Metformin and reduced risk of cancer ... 6

2. Role of the AhR, CYP1A1 and CYP1B1 in carcinogenesis
 and mechanisms of regulation of gene expression .. 6

3. Regulation of gene expression and role of Nrf2 and HO-1
 in tumorigenesis and chemoresistance ... 9

4. Role of Sirt1 in tumorigenesis and chemoresistance 11

II. Materials & Methods ... 15

1. Materials ... 15

2. Cell culture and treatment ... 16

3. Measurement of cell viability and cytotoxicity ... 17

4. BrdU incorporation assay .. 18
5. RNA preparation and reverse transcription-polymerase chain reaction (RT-PCR)

6. Quantitative real-time RT-PCR (qRT-PCR)

7. Luciferase and β-galactosidase assays

8. Western blotting

9. Preparation of nuclear and cytosolic extracts

10. Immunoprecipitation (IP)

11. Chromatin immunoprecipitation (ChIP)

12. Small interfering RNA transfection

13. Sp1, HO-1, Sirt1, Pgc-1α and PPARγ overexpression

14. miR-34a inhibitor and mimic transfection

15. Measurement of intracellular reactive oxygen species (ROS)

16. Statistical analysis

III. Results

1. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

1.1. Metformin inhibits CYP1A1 and CYP1B1 expression in breast cancer cells

1.2. Down-regulation of AhR expression is required for the
suppression of CYP1A1 and CYP1B1 by metformin 33

1.3. Down-regulation of Sp1 by metformin inhibits AhR transcriptional activity in breast cancer cells 38

1.4. Inhibition of CYP1A1 and CYP1B1 expression by metformin is independent of ERα 41

1.5. Metformin suppresses endogenous AhR-ligand-induced CYP1A1 and CYP1B1 expression by reducing TDO expression in breast cancer cells 43

1.6. Metformin suppresses TDO expression by down-regulating the Sp1/glucocorticoid receptor (GR) signaling pathway 47

2. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf/ERK/Nrf2 signaling and AMPK-independent pathways 52

2.1. Metformin suppresses HO-1 expression in cancer cells 52

2.2. Metformin suppresses Nrf2 expression through a Keap1-independent mechanism in cancer cells 54

2.3. Metformin suppresses Nrf2 expression in cancer cells via Raf-ERK inactivation 58

2.4. Down-regulation of HO-1 expression by metformin is independent of AMPK 61
2.5. Reduction of HO-1 contributes to anti-proliferative effects of metformin in cancer cells

3. Metformin induces microRNA-34a to down-regulate Sirt1/Pgc-1α/Nrf2 pathway leading to increased susceptibility of cancer cells to oxidative stress and therapeutic agents

3.1. Metformin suppresses Sirt1 expression in p53 wild-type cancer cells

3.2. p53-dependent induction of miR-34a is required for the reduction of Sirt1 by metformin

3.3. Down-regulation of Sirt1 by metformin inhibits Nrf2 expression and increases susceptibility of wild-type p53 cancer cells to oxidative stress

3.4. Metformin inhibits Nrf2 expression mediated by suppression of Pgc-1α

3.5. Metformin suppresses Nrf2 expression by inhibiting PPARγ transcriptional activity and attenuating PPARγ binding to the Nrf2 promoter

3.6. Up-regulation of DR5 expression by metformin sensitizes wild-type p53 cancer cells to TRAIL-induced apoptosis
IV. Discussion .. 97

V. Conclusion .. 118

VI. References ... 120

Abstract in Korean ... 147

Appendix ... 150
List of Figures

1. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

Fig. 1. Metformin down-regulates CYP1A1 and CYP1B1 transcription in MCF-7 breast cancer cells ------------------------------- 31

Fig. 2. Metformin down-regulates AhR expression in MCF-7 breast cancer cells --- 35

Fig. 3. Down-regulation of AhR expression is required for the reduction of CYP1A1 and CYP1B1 by metformin in MCF-7 cells -------- 37

Fig. 4. The reduction in Sp1 protein levels mediated by metformin suppresses AhR transcriptional activity in MCF-7 breast cancer cells --- 39

Fig. 5. Metformin down-regulates CYP1A1 and CYP1B1 expression in ERα-negative MDA-MB-231 breast cancer cells ----------- 42

Fig. 6. Metformin attenuates endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by reducing tryptophan-2,3-dioxygenase expression in MCF-7 breast cancer cells ------------------------------- 45

Fig. 7. The down-regulation of TDO expression by metformin is mediated via down-regulation of Sp1 and GR proteins -------- 49
Fig. 8. Proposed signaling pathways underlying the effects of metformin on down-regulation of CYP1A1 and CYP1B1 expression in breast cancer cells ------------------- 51

2. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf/ERK/Nrf2 signaling and AMPK-independent pathways

Fig. 9. Metformin down-regulates HO-1 expression in various cancer cells --- 53

Fig. 10. Effects of metformin on Nrf2 and Keap1 expression in cancer cells --- 56

Fig. 11. Inactivation of Raf-ERK signaling by metformin is required for down-regulation of Nrf2 expression in cancer cells ------ 59

Fig. 12. Metformin suppresses HO-1 expression in cancer cells in an AMPK-independent manner -------------------------------- 63

Fig. 13. Effects of metformin on proliferation of cancer cells ---------- 67

Fig. 14. Role of HO-1 suppression in anti-proliferative effect of metformin in cancer cells ------------------------------------- 69

Fig. 15. Proposed signaling pathways underlying the effects of metformin on down-regulation of HO-1 expression in cancer cells -------- 70