MỤC LỤC

Lời nói đầu
5

Chương 1 NHỮNG KHAI NIỆM CƠ BẢN CỦA NHMITTED ĐÔNG KÝ THUẬT

A. TỔM TẤT LÝ THUYẾT
1. Nhiệt độ
7
2. Đồ đàm nóng đài của vật rắn và khí nhiệt độ thay đổi tử t, đến t2
7
3. Đồ đàm nóng thể tích ∆V khi nhiệt độ thay đổi tử t, đến t2
7
4. Áp suất
7
5. Nhiệt dung riêng
8
6. Nhiệt và công
8

Bảng 1.1. Đối đầu vi hệ SI – hệ Anh/Mỹ
9
Bảng 1.2. Đối nhiệt độ °F ↔ °C
12
Bảng 1.3. Hệ số đàm nóng đài của vật rắn
13
Bảng 1.4. Hệ số đàm nóng thể tích của chất lỏng ở áp suất 1 bar, nhiệt độ 20°C
14
Bảng 1.5. Nhiệt dung riêng và số mũ đoan nhiệt độ khí lý tưởng
14
Bảng 1.6. Nhiệt dung riêng trung bình phụ thuộc vào nhiệt độ
(trong khoảng 0°C – 1500°C)
15
Bảng 1.7. Thống số kỹ thuật bộ đàm no DHEJ-5000
16
Bảng 1.8. Thống số kỹ thuật bộ đàm no XF
17
Bảng 1.9. Thống số kỹ thuật bộ đàm đài thể tích
19
Bảng 1.10. Thống số vật lý của không khí khô theo nhiệt độ (p = 760 mmHg)
19

B. BÀI TẬP
20
C. BÁI GIẢI VỊ DƯ
21

Chương 2 QUÁ TRÌNH NHMITTED ĐÔNG CỦA KHÍ VÀ HƠI

A. TỔM TẤT LÝ THUYẾT
24
1. Bằng công thức các quá trình nhiệt động cơ bản của khí lý tưởng
24
2. Máy nén piston
25
3. Các quá trình lưu động của khí và hơi
25
B. BÀI TẬP
27
C. BÁI GIẢI VỊ DƯ
31

Chương 3 CHU TRÌNH CỦA CHẤT KHÍ

A. TỔM TẤT LÝ THUYẾT
38
1. Công và nhiệt trong chu trình
38
2. Hậm trạng thái entropi
39
3. Công thức tính toán các chu trình động cơ đốt trong
39
B. BÀI TẬP
40
C. BÁI GIẢI VỊ DƯ
43

Chương 4 CHU TRÌNH THUẤN CHIÊU CỦA KHÍ THỰC

A. TỔM TẤT LÝ THUYẾT
51
1. Nhiệt cung cấp cho quá trình hoá hơi dạng áp
51
2. Thống số của hơi bảo hoá âm
51
3. Chu trình Rankine
51
4. Bằng số và độ thị của hơi nước
52
B. BÀI TẬP
58
C. BÁI GIẢI VỊ DƯ
60

Chương 5 CHU TRÌNH THIẾT BỊ LÀM LẠNH

A. TỔM TẤT LÝ THUYẾT
62
1. Chu trình máy lạnh kiểu máy nén hơi một cấp
62
Chương 6
KHÔNG KHI ẨM
A. TÔM TẤT LÝ THUYẾT
1. Độ ẩm i - d đa không khí ẩm
2. Các công thức xác định thông số không khí ẩm
3. Công thức giải trình hóa tròn
Độ ẩm i - d đa không khí ẩm (t = 0°C - 200°C)
Độ ẩm i - d Mollier của không khí ẩm
B. BÀI TẬP
C. BÀI GIẢI VÍ DỤ

Chương 7
TIẾT KIỆM NĂNG: LƯỢNG TRONG CÔNG TRÌNH
A. TÔM TẤT LÝ THUYẾT
1. Hiệu suất toàn bộ quá trình biến đổi từ nguồn năng lượng sơ cấp đến đăng năng lượng năng lượng cuộn của:
2. Chỉ số hiệu quả năng lượng thực của máy lạnh
3. Chỉ số tiêu thụ điện năng tich hợp nam của chillier theo CRI 550/590 2003 (Hoa kỳ)
4. Công thức xác định tiêu thụ điện của hệ thống điều hoà không khí
5. T tiêu thụ điện của hệ thống điều hoà không khí sử dụng Chiller
6. T tiêu thụ điện của hệ thống điều hoà không khí sử dụng máy làm lạnh trực tiếp
Phụ lục 7.1. Mức phụ tải nhiệt cho sinh hoạt
Phụ lục 7.2. Hệ số sử dụng độ chính
Phụ lục 7.3. Đài công suất độ nhiệt
Phụ lục 7.4. Thông số kỹ thuật bình đun nước nóng bằng điện của 1 số hàng
Phụ lục 7.5. Thông số kỹ thuật của 1 số loại bình đun nước nóng bằng gas
Phụ lục 7.6. Thông số cơ bản của lưới điện thì thấm
Phụ lục 7.7. Thông số cơ bản của lưới điện thì trí lực
Phụ lục 7.8. Thông số kỹ thuật của bom nhiệt điện dùng cung cấp nước nóng
Phụ lục 7.9. Công suất các loại bom nhiệt công nghiệp: THR 040-100, 50Hz
Phụ lục 7.10, a. Thông số kỹ thuật máy làm lạnh nước - bom nhiệt công nghiệp (Chiller - Heatpump) cung cấp nước lạnh 7°C hoặc nước nóng 45°C
Phụ lục 7.10b. Thông số vận hành máy làm lạnh nước - bom nhiệt khi chạy ở chế độ làm lạnh
Phụ lục 7.10c. Thông số vận hành máy làm lạnh nước - bom nhiệt khi chạy ở chế độ bom nhiệt
Phụ lục 7.11a. Thông số kỹ thuật của máy làm lạnh nước giải nhiệt gió
(Air cooled chillier)
Phụ lục 7.11b. Thông số vận hành của máy làm lạnh nước giải nhiệt gió
Phụ lục 7.12 Thông số kỹ thuật máy làm lạnh nước giải nhiệt nước (Water cooled chillier) cung cấp nước lạnh 7°C
Phụ lục 7.13. Thông số kỹ thuật của thiết bị giải nhiệt
Phụ lục 7.14. Biểu đồ giải điểm trong ngày
Phụ lục 7.15. Đặc tính nhiệt của 1m³ bình tích lạnh
B. BÀI TẬP
C. BÀI GIẢI VÍ DỤ
TẤI LIỆU THAM KHẢO

63
64
64
65
68
75
77
80
80
80
80
81
82
84
86
91
91
91
92
93
93
94
95
95
95
95
95
96
96
96
96
97
97
98
101
101
102
102
104
104
106
107
109
111
113
113
116
143
Chapter 1

Những khái niệm cơ bản của nhiệt động kĩ thuật

A — Tóm tắt lý thuyết

1. Nhiệt độ

\[T(K) = t(^\circ C) + 273.15 = t(^\circ F) + 273 \]

\[t(^\circ C) = \frac{5}{9}[T(^\circ F) - 32] \]

\[\Delta t(^\circ C) = \Delta T(K) \]

2. Đồ dàn nó dải của vật rắn \(\Delta l \) khi nhiệt độ thay đổi từ \(t_1 \) đến \(t_2 \)

\[\Delta l \approx l_0 \alpha_{\text{v}} |_{t_0}^t (t_2 - t_1) \ (m) \]

\(l_0 \) — Chuyên đầy vật rắn ở \(t \),

\(\alpha_{\text{v}} |_{t_0}^t \) — Hệ số dàn nó dải của vật rắn trong khoảng nhiệt độ \(t_1 \rightarrow t_2 \) được xác định như sau:

\[\alpha_{\text{v}} |_{t_0}^t = \frac{\alpha_{\text{v}} |_{t_2}^t t_2 - \alpha_{\text{v}} |_{t_1}^t t_1}{t_2 - t_1} \ (1/K) \]

3. Đồ dàn nó thể tích \(\Delta V \) khi nhiệt độ thay đổi từ \(t_1 \) đến \(t_2 \)

\[\Delta V \approx V_0 \beta_{\text{v}} |_{t_0}^t (t_2 - t_1) \ (m^3) \]

\(V_0 \) — Thể tích chất lỏng ở \(t \),

\(\beta_{\text{v}} |_{t_0}^t \) — Hệ số dàn nó thể tích trung bình trong khoảng nhiệt độ \(t_1 \rightarrow t_2 \) được xác định như sau:

\[\beta_{\text{v}} |_{t_0}^t = \frac{\beta_{\text{v}} |_{t_2}^t t_2 - \beta_{\text{v}} |_{t_1}^t t_1}{t_2 - t_1} \ (1/K) \]

4. Áp suất

\[p = p_{\text{kq}} + p_o \]

\[p = p_{\text{kq}} - p_{\text{a}} \]

\(p \) — Áp suất tuyệt đối của chất khí; \(p_{\text{kq}} \) — Áp suất khí quyển;

\(p_o \) — Áp suất dự;

\(p_{\text{a}} \) — Đỏ chân không.

Khi sử dụng các công thức thiết lập theo phương trình trạng thái khí lý tưởng thì áp suất được tính bằng \((N/m^2) = \text{pascal})\.

7
5. Nhiệt dung riêng

\[C = \frac{dq}{dt} \]

Nhiệt dung riêng trung bình trong khoảng nhiệt độ \(t_1 \to t_2 \): \(C_{0 \to t_2} = \frac{1}{\Delta t} \left(C_{0 \to t_2} t_2 - C_{0 \to t_1} t_1 \right) \)

\(C_{0 \to t_1}, C_{0 \to t_2} \) là nhiệt dung riêng trung bình trong khoảng nhiệt độ từ \(0 \to t_1 \) và \(0 \to t_2 \).

Đối với khí lý tưởng: \(\frac{C_p}{C_v} = k \) \quad \text{C}_p \text{ – Nhiệt dung riêng dạng áp.}

\[C_v = \frac{R}{k - 1} \] \quad \text{C}_v \text{ – Nhiệt dung riêng dạng tích.}

Đơn vị của nhiệt dung riêng: nhiệt dung riêng khối lượng (J/kg.K), nhiệt dung riêng thể tích (J/m\(^3\)_v.K), nhiệt dung riêng kilômol (J/kmol.K).

6. Nhiệt và công

Tính nhiệt lượng theo nhiệt dung riêng:

\[Q = G.C.\Delta t = V_{\nu_{c}} C'.\Delta t = M.C_{\mu}.\Delta t \]

Trong đó:

\(Q \): Nhiệt lượng (J).
\(C \): Nhiệt dung riêng khối lượng (J/kg.K).
\(C' \): Nhiệt dung riêng thể tích (J/m\(^3\)_v.K).
\(C_{\mu} \): Nhiệt dung riêng kilômol (J/kmol.K).
\(G \): Khối lượng chất khí (kg).
\(V_{\nu_{c}} \): Thể tích ở điều kiện tiêu chuẩn (t\(_s\) = 0°C, p\(_s\) = 760 mmHg) (m\(^3\)_v).
\(M \): Số kilômol.
\(\Delta t = t_2 - t_1 \): Sự thay đổi nhiệt độ (°C).

- Công thay đổi thể tích của chất khí: \(l = \int_{t_1}^{t_2} dl = \int_{i}^{f} pdV \left(\frac{J}{kg} \right) \)

- Công kỹ thuật: \(l_{\nu_{c}} = \int_{i}^{f} \nu_{c} dp \left(\frac{J}{kg} \right) \)

- Quy tắc đầu cuối nhiệt lượng và công thay đổi thể tích như sau:
 - CMG nhận nhiệt: \(Q > 0 \)
 - CMG nhận nhiệt: \(Q < 0 \)
 - CMG đâm nóng (sinh công): \(L > 0 \)
 - CMG bị ném (thoát công): \(L < 0 \)
Bảng 1.1. Đổi đơn vị hệ SI – hệ Anh / Mỹ

<table>
<thead>
<tr>
<th>CHIỀU DÁI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cm</td>
<td>= 0,3937 in (inch)</td>
</tr>
<tr>
<td>1 m</td>
<td>= 3,2808 ft</td>
</tr>
<tr>
<td></td>
<td>= 1,0936 yard</td>
</tr>
<tr>
<td>1 km</td>
<td>= 0,6214 mile (statute)</td>
</tr>
<tr>
<td></td>
<td>= 0,5396 Seemeile</td>
</tr>
<tr>
<td>1 in (inch)</td>
<td>= 2,5400 cm</td>
</tr>
<tr>
<td>1 Ft = 12 in</td>
<td>= 0,3048 m</td>
</tr>
<tr>
<td>1 Yard = 3 ft</td>
<td>= 0,9144 m</td>
</tr>
<tr>
<td>1 mile (statute)</td>
<td>= 1,60934 km</td>
</tr>
<tr>
<td>1 Seemeile</td>
<td>= 1,85318 km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIỆN TÍCH</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cm²</td>
<td>= 0,1550 sq in</td>
</tr>
<tr>
<td>1 m²</td>
<td>= 10,7639 sq ft</td>
</tr>
<tr>
<td></td>
<td>= 6,4516 cm²</td>
</tr>
<tr>
<td>1 sq in</td>
<td>= 0,0929 m²</td>
</tr>
<tr>
<td></td>
<td>= 6451,6 cm²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THỂ TÍCH</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cm³</td>
<td>= 0,06102 cu in</td>
</tr>
<tr>
<td>1 dm³</td>
<td>= 61,024 cu in</td>
</tr>
<tr>
<td>1 l</td>
<td>= 0,03531 cu ft</td>
</tr>
<tr>
<td></td>
<td>= 61,026 cu in</td>
</tr>
<tr>
<td></td>
<td>= 0,21998 gal (brit.)</td>
</tr>
<tr>
<td></td>
<td>= 0,26428 gal (USA)</td>
</tr>
<tr>
<td>1 cu in</td>
<td>= 16,387 cm³</td>
</tr>
<tr>
<td>1 cu ft</td>
<td>= 28,317 dm³</td>
</tr>
<tr>
<td>1 cu yard</td>
<td>= 0,7646 m³</td>
</tr>
<tr>
<td>1 gal (brit.)</td>
<td>= 4,546 l</td>
</tr>
<tr>
<td>1 gal (am.)</td>
<td>= 3,785 l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KHÔI LUONG</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 g</td>
<td>= 0,03527 oz</td>
</tr>
<tr>
<td></td>
<td>= 15,432 grain</td>
</tr>
<tr>
<td>1 kg</td>
<td>= 2,2046 lb (av)</td>
</tr>
<tr>
<td></td>
<td>= 0,0648 g</td>
</tr>
<tr>
<td></td>
<td>= 28,35 g</td>
</tr>
<tr>
<td></td>
<td>= 16 oz</td>
</tr>
<tr>
<td></td>
<td>= 0,4536 kg</td>
</tr>
<tr>
<td></td>
<td>= 7000 grains</td>
</tr>
<tr>
<td>1 t</td>
<td>= 0,984 long tons</td>
</tr>
<tr>
<td></td>
<td>= 1,102 short tons</td>
</tr>
<tr>
<td>1 kg/m³</td>
<td>= 0,06243 lb/cu ft</td>
</tr>
<tr>
<td>1 grain</td>
<td>= 1016 kg</td>
</tr>
<tr>
<td>1 oz</td>
<td>= 2000 lb = 907,2 kg</td>
</tr>
<tr>
<td>1 lb/cu ft</td>
<td>= 16,0185 kg/m³</td>
</tr>
<tr>
<td>1 grain/lb</td>
<td>= 0,1426 g/kg</td>
</tr>
<tr>
<td>1 grain/ cu ft</td>
<td>= 2,2884 g/m³</td>
</tr>
<tr>
<td>1 g/kg</td>
<td>= 7,0 grain/lb</td>
</tr>
<tr>
<td>1 g/m³</td>
<td>= 0,437 grain/ cu ft</td>
</tr>
<tr>
<td>1 g/m²</td>
<td>= 2,855 ton/ sq mile</td>
</tr>
<tr>
<td>1 ton/ sq mile</td>
<td>= 0,3503 g/m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TỐC ĐỘ VÀ LUU LƯỢNG</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m/s</td>
<td>= 196,85 ft/min</td>
</tr>
<tr>
<td>1 km/h</td>
<td>= 0,6214 mph</td>
</tr>
<tr>
<td>1 m³/h</td>
<td>= 4,403 gal/min (am.)</td>
</tr>
<tr>
<td></td>
<td>= 3,666 gal/min (brit.)</td>
</tr>
<tr>
<td>1 m³/h</td>
<td>= 0,5886 cu ft/min – (cfm)</td>
</tr>
<tr>
<td>1 ft/min</td>
<td>= 0,508 cm/s</td>
</tr>
<tr>
<td>1 mph</td>
<td>= 1,60934 km/h</td>
</tr>
<tr>
<td>1 gal/min (am.) (gpm)</td>
<td>= 0,227 m³/h</td>
</tr>
<tr>
<td>1 gal/min (brit.) (gpm)</td>
<td>= 0,273 m³/h</td>
</tr>
<tr>
<td>1 cu ft/min – (cfm)</td>
<td>= 28,317 l/min</td>
</tr>
<tr>
<td>1 l/min</td>
<td>= 1,700 m³/h</td>
</tr>
<tr>
<td>1 kg/h</td>
<td>= 0,0367 lb/min</td>
</tr>
<tr>
<td>1 lb/min</td>
<td>= 27,216 kg/h</td>
</tr>
</tbody>
</table>